Call for Abstract

28th World Summit on Genetics and Genomics, will be organized around the theme “”

pharmacogenomics-2020 is comprised of 25 tracks and 0 sessions designed to offer comprehensive sessions that address current issues in pharmacogenomics-2020.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

Functional genomics is the study of how genes and intergenic regions of the genome add to various biological processes. A researcher in this field typically studies genes or regions on a “genome-wide” scale (i.e. all or multiple genes/regions at the same time), with the expectation of narrowing them down to a list of candidate genes or regions to analyses in more detail. The objective of functional genomics is to decide how the individual components of a biological system work together to produce a particular phenotype. Functional genomics focuses on the dynamic expression of gene products in a specific context, for example, at a specific developmental stage or during an infection.

 

Proteomics relates to the comprehensive analysis of expressed proteins from a cell, a multicellular system, an extracellular environment, or a large set of recombinant clones. This is accomplished utilizing combinations of protein separation, identification, and/or assay techniques, such as liquid chromatography-mass spectrometry (LC-MS), two-dimensional gel electrophoresis-mass spectrometry (2DE-MS), affinity purification-mass spectrometry (AP-MS), and protein- or antibody-based microarrays. Metagenomics is the process by which the metagenome is generated: it includes sequencing all DNA extracted from a sample followed by assembly of sequence reads or mapping them to a reference database followed by annotation of the genes.

 

Gene therapy is a preliminary strategy that uses qualities or essentially nucleic corrosive polymers to treat or forestall malady into a patient's cell as a medication for illness treatment. Later on, this technique may enable specialists to treat confusion by embedding’s a quality into a patient's cells as opposed to using drugs or medical procedure. Gene Therapy is a way to settle a hereditary issue at its center or source. The polymers are either converted into proteins which meddle with the objective quality articulation or else they could rectify hereditary changes. Genetic counseling is the methodology by which an individual or people in danger of any acquired issue are informed and made mindful with respect to the results and nature of the confusion, and the likelihood of creating or transmitting it.

 

Human genetics is the study of the inheritance of characteristics by children from parents. Inheritance in humans doesn't vary in any fundamental way from that in other organisms. The human genome is the finished arrangement of nucleic corrosive successions for individuals, encoded as DNA inside the 23 chromosome combines in cell cores and in a little DNA particle found inside individual mitochondria. These are typically treated independently as the atomic genome, and the mitochondrial genome.

 

Microbial Genomics is a field of science that analyzes and compares the complete genome (genetic material of an organism) of a microorganisms or an enormous number of genes in a simultaneous manner. Microbial genomes are widely variable and reflect the enormous diversity of bacteria, archaea and lower eukaryotes. Bacterial genomes usually comprise of a single circular chromosome, but species with more than one chromosome (eg. Deinococcus radiodurans), linear chromosomes (eg. some Bacillis subtilis strains) and combinations of linear and circular chromosomes (eg. Agrobacterium tumefaciens) also exist.

 

Comparative genomic hybridization (CGH) is a molecular cytogenetic strategy for the identification and mapping of chromosomal gains and losses.  It depends on the cohybridization of differentially labeled test and reference DNAs onto metaphase spreads, which usually have been prepared from peripheral blood lymphocytes of a healthy donor. The signal intensity ratios of the two labels along the chromosomes then reflect DNA copy number changes in the test genome comparative with the reference genome.

 

Genomics may be a key factor in tending to the worldwide energy crisis. Through their insight in this field, scientists are building up a better understanding of how to harness different renewable energy sources, such as lignocellulosic biomass, microalgae, and cyanobacteria. Besides, it appears that genetic engineering of enzymes will be a key factor in optimizing development of sustainable biofuels that can someday replace fossil fuels on a global scale. Genomic information gathered from across the biosphere, including potential energy crops and microorganisms able to break down biomass will be vital for improving the prospects of significant cellulosic biofuel production.

 

Epigenomics is the study of the reversible epigenetic modifications that influence gene expression and regulation without altering the DNA sequence itself.  Epigenomics is the study of the epigenome, which is a multitude of chemical compounds that direct the functioning genome as a whole. These compounds tie to the DNA to enact or deactivate specific genes in the genome, thereby altering the way that it behaves. As a result, the epigenome may play a role in the regulation of protein production in some cells of the body.

 

Cancer is not inherited. It is only the genetic defect that can prompt to cancer that is inherited, which implies that the inclination to getting cancer, or increased risk, can be inherited. However, this is not common. As indicated by current estimates, just around one of every 10 cases of cancer are associated with hereditary predisposition.  A genetic disposition to cancer can be identified by the onset of cancer occurring at a very young age or that many closely related members of the same family suffer from the same type of cancer. The genetic defects that incur a predisposition to cancer are varied. They can be rare, they may include genetic changes that represent a high cancer risk, or ones that carry only a low risk, or then somewhere in between.

 

Clinical genetics involves the study, counseling and treatment of individuals and families with heritable disorders and disease predisposition. Clinical genetic testing alludes to the laboratory analysis of DNA or RNA to aid in the diagnosis of disease. Genetic testing can give definitive diagnosis as well as help predict the likelihood of developing a particular disease before symptoms even appear. It can tell if an individual is carrying a specific gene that could be passed on to his or her children and sometimes it can give information as to whether some treatments will work before a patient beginnings therapy treatment.

 

Breeding is the use of genetic principles in animal husbandry, agriculture, and horticulture to improve desirable qualities.  Breeding and Germplasm Development is a generally normal and important technique used to develop new plants from the germplasm. Germplasm can be described as living cell or tissue from which new plants can be developed.

 

Stem-cell research is the area of research that studies the properties of stem cells and their potential use in medicine. Stem Cell Therapy is the treatment for various disorders which non-seriously life-threatening by using stem cells. These stem cells can be obtained from a variety of sources and used to potentially treat more than 80 disorders which include neuromuscular, organ, chronic and degenerative disorders. Stem cell therapy is currently being researched for the treatment of various diseases. While research and clinical trials are in process with changing degrees of success, stem cell therapy holds the potential to offer a successful cure for these conditions.

 

Genome sequencing is the most immediate strategy of detecting mutations, for example single nucleotide polymorphisms (SNPs) and copy number variations (CNVs). Genome annotation is the way toward recognizing any functional element along the DNA sequence of a genome, yet at beginning stages often focuses on genes.  It consists of three main steps: recognizing components on the genome that do not code for proteins, identifying elements on the genome, a process called gene prediction, and attaching biological information to these components.

 

Plant genomics intends to sequence, describe, and study the genetic compositions, structures, associations, functions, and interactions/networks of an entire plant genome. Its development and advances are tightly interconnected with proteomics, metabolomics, metagenomics, transgenomics, genomic selection, bioinformatics, epigenomics, phenomics, system biology, present day instrumentation, and robotics sciences. Plant genomics has altogether progressed in the course of recent decades in the place that is known for cheap, high-throughput sequencing innovations and completely sequenced more than 100 plant genomes. These advances have wide implications in each part of plant biology and breeding, powered with novel genomic selection and manipulation tools while generating many grand challenges and tasks ahead. This Plant genomics provides some updated discussions on current advances, difficulties, and future perspectives of plant genome studies and applications.

 

Tissue engineering is a multi-disciplinary science including the principles of cell biology, engineering and material sciences to replace or reestablish biological tissues which play out a specific function with a better framework. It is an act of combining the cells of construct, scaffold and growth factors into a functional tissue. The possibility of bone-marrow derived mesenchyme stem cells, cardiac valves, auricular cartilage reconstruction, etc. Bio banking is a procedure where samples of body fluid or tissues are collected for research use to improve health and disease. Other information’s, for example height, weight and any questions regarding health (e.g. family history and lifestyle) also be recorded to provide the context for the samples.

 

The term molecular genetics sometimes alludes to an essential theory claiming that genes direct all life processes through the production of polypeptides, sometimes to a more modest basic theory about the expression and regulation of genes at the molecular level, and sometimes to an investigative approach applied throughout biomedical science that is based on investigative strategies grounded in the basic theory about genes. Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes.

 

Genomic medicine is an emerging medical discipline that involves using genomic information about a person as a major aspect of their clinical care (e.g. for diagnostic or therapeutic decision-making) and the health results and policy implications of that clinical use. As of now, genomic medicine is making an impact in the fields of oncology, pharmacology, rare and undiagnosed diseases, and infectious disease.

 

 Genetic Fingerprinting laboratory technique used to set up a connection between biological evidence and a suspect in a criminal investigation. A DNA sample taken from a crime scene is compared with a DNA sample from a suspect. If the two DNA profiles are a match, then the evidence came from that suspect. Conversely, if the two DNA profiles do not match, then the evidence cannot have come from the suspect. DNA fingerprinting is also used to establish paternity.

 

Genetically modified organisms (GMOs) can be characterized as organisms (i.e. plants, animals or microorganisms) in which the genetic material (DNA) has been altered in a way that does not occur naturally by mating and/or natural recombination. The technology is often called “modern biotechnology” or “gene technology”, some of the time additionally “recombinant DNA technology” or “genetic engineering”. It enables chosen singular genes to be moved from one organism into another, also between nonrelated species. Foods produced from or using GM organisms are often referred to as GM foods.

 

 

Cell biology is the study of cells and how they work, from the subcellular processes which keep them functioning, to the manner in which that cells cooperate with different cells. Whilst molecular biology focuses to a great extent on the molecules of life (largely the nucleic acids and proteins), cell biology concerns itself with how these molecules are used by the cell to survive, reproduce and carry out normal cell functions. In biomedical research, cell biology is used to discover more about how cells normally work, and how disturbances in this normal function can result in disease. A comprehension of these procedures can prompt treatments which work by focusing on the abnormal function.

 

 

 

Genetic engineering, now and then called genetic modification, is the way toward changing the DNA in a life form's genome. This may mean transforming one base pair (A-T or C-G), erasing an entire locale of DNA, or presenting an extra duplicate of a gene. It may also mean removing DNA from another organism’s genome and joining it with the DNA of that person. Genetic engineering is used by researchers to enhance or modify the characteristics of an individual organism. Genetic engineering can be applied to any organism, from a virus to a sheep. For example, genetic engineering can be used to produce plants that have a higher nutritional value or can endure exposure to herbicides.

 

Immunogenetics is the study of the genetic basis of the immune response. It incorporates the study of normal immunological pathways and the identification of genetic variations that outcome in immune defects, which may result in the identification of new therapeutic targets for immune diseases.

 

Animal Genetics analyzes the heredity and varieties in animals. Animals have an autonomous legacy of characters due to their generous number of chromosomes. Half breed Analysis is the key strategy to consider the legacy of characters and it picks the possibility of different morphological, physiological and biochemical characteristics which a huge piece of the time depend just on one of a few arrangements of characteristics.

Sequencing DNA means deciding the order of the four chemical building blocks - called "bases" - that make up the DNA molecule. The sequence tells scientists the sort of genetic information that is conveyed in a specific DNA segment. For instance, scientists can utilize sequence information to determine which stretches of DNA contain genes and which stretches carry regulatory instructions, turning genes on or off. In addition, and importantly, sequence data can feature changes in a gene that may cause illness.

 

In pharmacogenomics, genomic information is used to study individual reactions to drugs. When a gene variant is associated with a particular drug response in a patient, there is the potential for making clinical choices dependent on genetics by adjusting the dosage or picking an alternate drug, for example. Scientists assess gene variants affecting an individual's drug response the same way they assess gene variants associated with diseases: by identifying genetic loci associated with known drug responses, and then testing individuals whose response is unknown. Present day approaches incorporate multigene analysis or entire genome single nucleotide polymorphism (SNP) profiles, and these approaches are just coming into clinical use for drug discovery and development.